Noise control

The noise source

the transmission path

the receiver

Air-borne sound transmission

- Sound absorption (converting sound energy to heat)
- Sound insulation (by reflection)

Structure-borne sound transmission

- Isolation between source and structure
- Vibration damping (converting vibration energy to heat)

Erik Andreassen 2008-04-08

1

Sound Transmission Loss

$$R \equiv 10 \log \frac{1}{\tau}$$

$\tau : \text{Sound transmission coefficient} \\ \text{Perfect transmission: } \tau \rightarrow 1 \text{ and } R \rightarrow 0 \\ \end{array}$

Mass-controlled transmission loss

The noise reduction is governed by the mass per unit area

.

Sound Transmission Loss

$$R \equiv 10 \log \frac{1}{\tau}$$

$\tau : \text{Sound transmission coefficient} \\ \text{Perfect transmission: } \tau \rightarrow 1 \text{ and } R \rightarrow 0 \\ \end{array}$

Coincidence

Sound wavelength = Bending wavelength

Frequency

Coincidence

The lowest frequency at which coincidence occurs is the *critical frequency*

For a homogeneous isotropic plate:

f_c∝ (ρ/Eh²)^{1/2}

f_c for 3 mm thick plates: 9 kHz (PA66GF30), 4 kHz (aluminium), 18 kHz (lead)

Air-borne sound

The wall becomes almost "transparent" to the sound wave, i.e. the sound transmission drops

Structure borne sound

 a wall excited in bending at the critical frequency will strongly tend to radiate a corresponding acoustic sound wave

Control of air-borne noise

Air-borne sound transmission

- Sound absorption (converting sound energy to heat)
- Sound insulation (by reflection)

bigh transmission loss

Sound reflection

Large change in impedance $Z = \rho v \cong (\rho E)^{1/2}$ (for isotropic elastic solid)

Sound absorption

porous fibre mats, cellular polymers

- Control of resonance (detuning)
 - mass
 - stiffness

Control of stiffness (reduce the vibration amplitude)

thickness

ribs

Erik Andreassen 2008-04-08

8

Conclusions

- Mass-controlled regime: No weight-saving with plastics if the design is the same
- Resonance and coincidence: Plastics have lower stiffness, but higher intrinsic damping than metals
 - Lower eigenfrequencies. Larger deformations in general, but higher damping at eigenfrequencies.
 - Higher critical frequencies. Higher damping.
- Smart designs
 - Sound absorption and sound reflection (e.g. use of double-wall structure)
 - Vibration control (stiffness, structural damping)
- No general solution for noise control

9